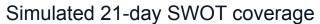
Approved for public release; distribution unlimited

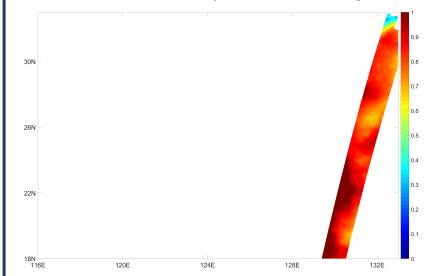
Next Generation Ocean Prediction: Preparing for SWOT

Joseph M. D'Addezio¹

Gregg A. Jacobs¹, Innocent Souopgui², Max Yaremchuk¹, Scott Smith¹, Clark Rowley¹, and Robert Helber¹

¹Naval Research Laboratory, Ocean Dynamics and Prediction, MS, USA ²University of New Orleans, Department of Physics, LA, USA




U.S. NAVAL LRESEARCH LABORATORY

Motivation & Objectives

Motivation

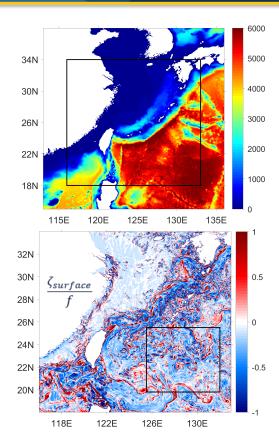
- A convergence of modeling and observing capabilities is underway:
- 1. 1 km regional simulations, capable of resolving submesoscale eddies, are now readily producible.
- The Surface Water Ocean Topography (SWOT) mission will provide the first global observations of sea surface height at horizontal resolutions capable of constraining the high resolution regional models.
- What impact will this new data provide in an operational setting?
- Using current operational technology, can submesoscale processes be constrained just by adding finer surface data?
- What technology/assumptions need(s) to be superseded to best utilize this exciting new dataset?

إد

LABORATORY

Question 1

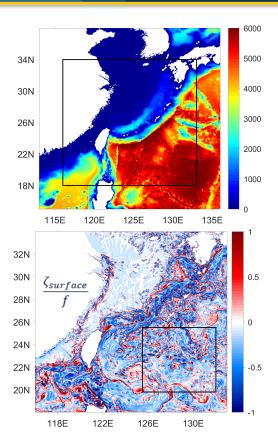
How will SWOT improve ocean prediction skill when using the current operational settings?



Observing System Simulation Experiment (OSSE)

NATURE			
Dynamical Model	Navy Coastal Ocean Model (NCOM)		
Horizontal Resolution	1 km		
# σ/z Layers	50		
Initial Condition	December 1, 2015 3 km NCOM		
Boundary Conditions	8 km HYCOM -> 3 km NCOM -> 1 km NCOM		
Surface Forcing	Navy Global Environmental Model (NAVGEM)		

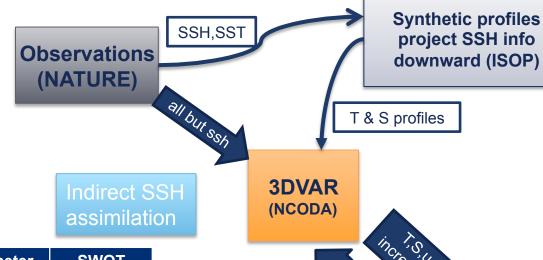
OSSE Experiments			
Dynamical Model	Navy Coastal Ocean Model (NCOM)		
Horizontal Resolution	1 km		
# σ/z Layers	50		
Initial Condition	December 1, 2016 NATURE		
Boundary Conditions	8 km HYCOM -> 3 km NCOM -> 1 km NCOM		
Surface Forcing	Navy Global Environmental Model (NAVGEM)		



Observing System Simulation Experiment (OSSE)

NATURE			
Dynamical Model	Navy Coastal Ocean Model (NCOM)		
Horizontal Resolution	1 km		
# σ/z Layers	50		
Initial Condition	December 1, 2015 3 km NCOM		
Boundary Conditions	8 km HYCOM -> 3 km NCOM -> 1 km NCOM		
Surface Forcing	Navy Global Environmental Model (NAVGEM)		

OSSE Experiments			
Dynamical Model	Navy Coastal Ocean Model (NCOM)		
Horizontal Resolution	1 km		
# σ/z Layers	50		
Initial Condition	December 1, 2016 NATURE		
Boundary Conditions	8 km HYCOM -> 3 km NCOM -> 1 km NCOM		
Surface Forcing	Navy Global Environmental Model (NAVGEM)		



#6

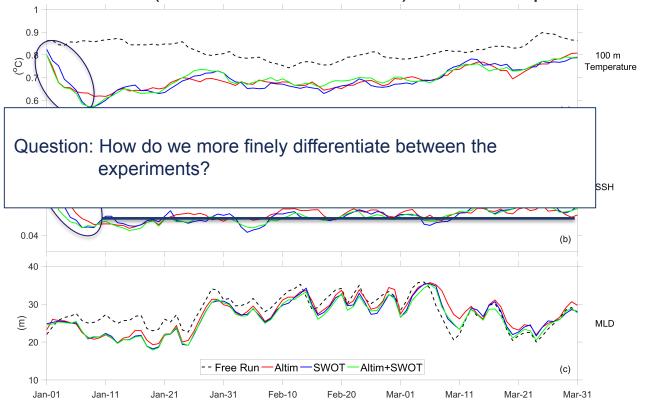
U.S.NAVAL RESEARCH LABORATORY

NCODA 3DVAR Data Assimilation

NCODA→ Navy Coupled Ocean Data Assimilation ISOP → Improved Synthetic Ocean Profile System NCOM → Navy Coastal Ocean Model

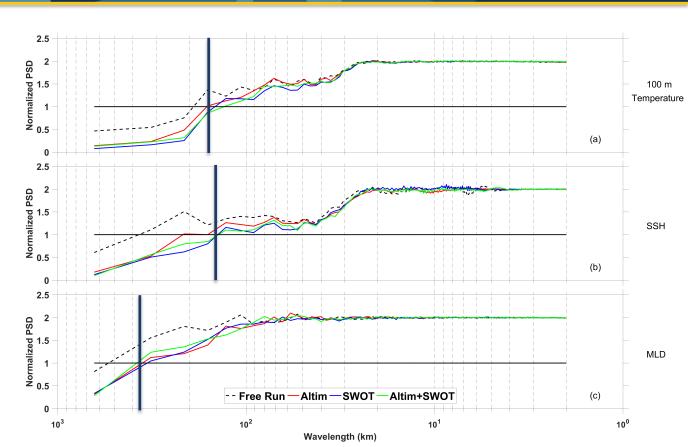
	SST	In Situ	Altimeter	SWOT
NATURE	None	None	None	None
Free Run	None	None	None	None
Altim	On	On	On	None
SWOT	On	On	None	On
Altim + SWOT	On	On	On On	

Ocean Model (OSSE)



Area-Averaged Errors

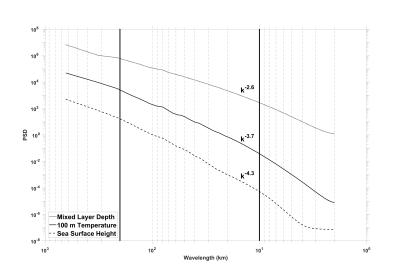
Mean Absolute Error (NATURE minus OSSE) in water depth > 1000 m

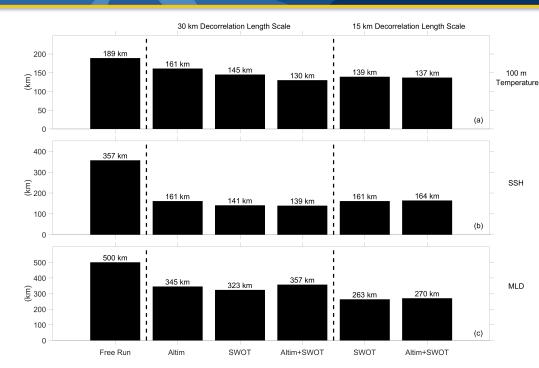


Wavenumber Spectra

$\frac{\varepsilon_{OSSE}}{\langle \gamma_{NATURE}, \gamma_{OSSE} \rangle}$

 ε_{OSSE} =Spectrum of NATURE – OSSE γ_{NATURE} =Spectrum of NATURE γ_{OSSE} =Spectrum of OSSE <> = Mean





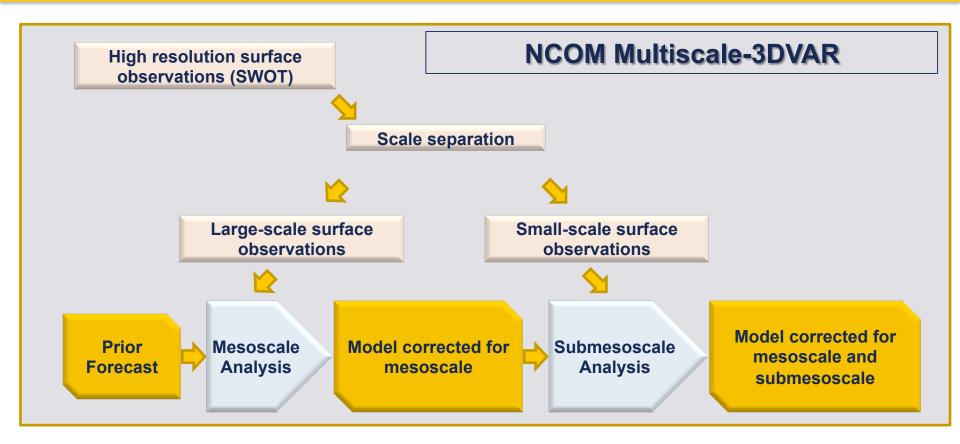
Wavenumber Spectra

- Variables with relatively low energy at short wavelengths feature higher errors when reducing the decorrelation length scale.
- The reverse is true for variables with relatively higher energy at short wavelengths.

A multiscale solution is required

D'Addezio, J.M., et al., 2019. Quantifying wavelengths constrained by simulated SWOT observations in a submesoscale resolving ocean analysis/forecasting system. *Ocean Modelling*, 135, 40-55.

Question 2


How can we extract more information from the SWOT observations without introducing scale aliasing?

Multiscale Assimilation

Multiscale Assimilation

Background

Analysis (1)

Large-Scale Observations
Large Decorrelation Length Scale
Increments (1) to Background

Analysis (2)

Small-Scale Observations
Smaller Decorrelation Length Scale
Increments (2) to Analysis (1)

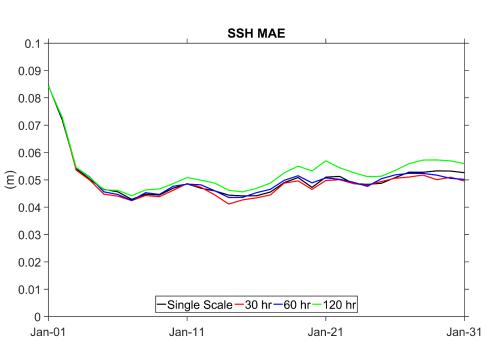
Background + Increments (1) + Increments (2)

Forecast

$$J_{L}(\delta \mathbf{x}_{L}) = \frac{1}{2} \delta \mathbf{x}_{L}^{T} \mathbf{B}_{L}^{-1} \delta \mathbf{x}_{L}$$

$$+ \frac{1}{2} \left(\mathbf{H}^{d} \delta \mathbf{x}_{L} - \mathbf{d}_{L}^{d} \right)^{T} \left(\mathbf{R}_{L}^{d} \right)^{-1} \left(\mathbf{H}^{d} \delta \mathbf{x}_{L} - \mathbf{d}_{L}^{d} \right)$$

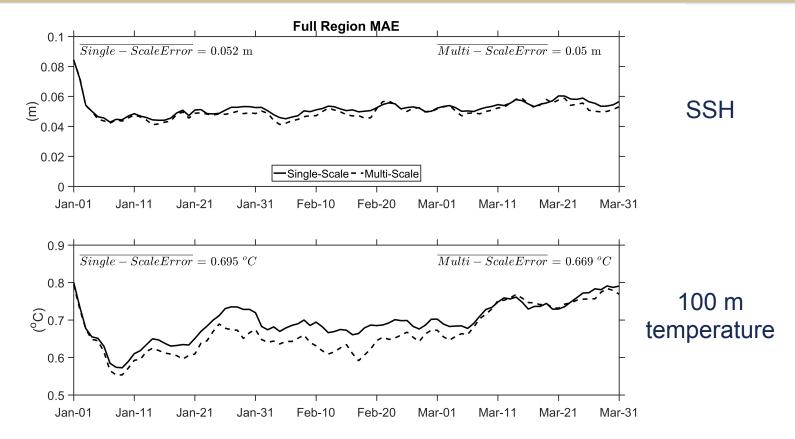
$$+ \frac{1}{2} \left(\mathbf{H}^{c} \delta \mathbf{x}_{L} - \mathbf{d}^{c} \right)^{T} \left(\mathbf{R}^{s} + \mathbf{H}^{c} \mathbf{B}_{S} \mathbf{H}^{cT} \right)^{-1} \left(\mathbf{H}^{c} \delta \mathbf{x}_{L} - \mathbf{d}^{c} \right)$$


$$\begin{split} J_{S}(\delta \mathbf{x}_{S}) &= \frac{1}{2} \delta \mathbf{x}_{S}^{T} \mathbf{B}_{S}^{-1} \delta \mathbf{x}_{S} \\ &+ \frac{1}{2} \left(\mathbf{H}^{d} \delta \mathbf{x}_{S} - \mathbf{d}_{S}^{d} \right)^{T} \left(\mathbf{R}_{S}^{d} \right)^{-1} \left(\mathbf{H}^{d} \delta \mathbf{x}_{S} - \mathbf{d}_{S}^{d} \right) \\ &+ \frac{1}{2} \left(\mathbf{H}^{c} \delta \mathbf{x}_{S} - \mathbf{d}^{c} \right)^{T} \left(\mathbf{R}^{c} + \mathbf{H}^{c} \mathbf{B}_{L} \mathbf{H}^{cT} \right)^{-1} \left(\mathbf{H}^{c} \delta \mathbf{x}_{S} - \mathbf{d}^{c} \right) \end{split}$$

Li et al. (2015)

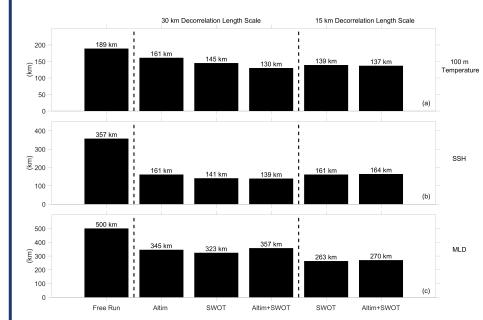
#13

Multiscale Assimilation


	MAE (cm)
Single Scale	5
Multi Scale (30 hr small-scale window)	4.94
Multi Scale (60 hr small-scale window)	5.04
Multi Scale (120 hr small-scale window)	5.3

Multiscale Assimilation

Summary and Conclusions


Next Generation Ocean Prediction - Preparing for SWOT

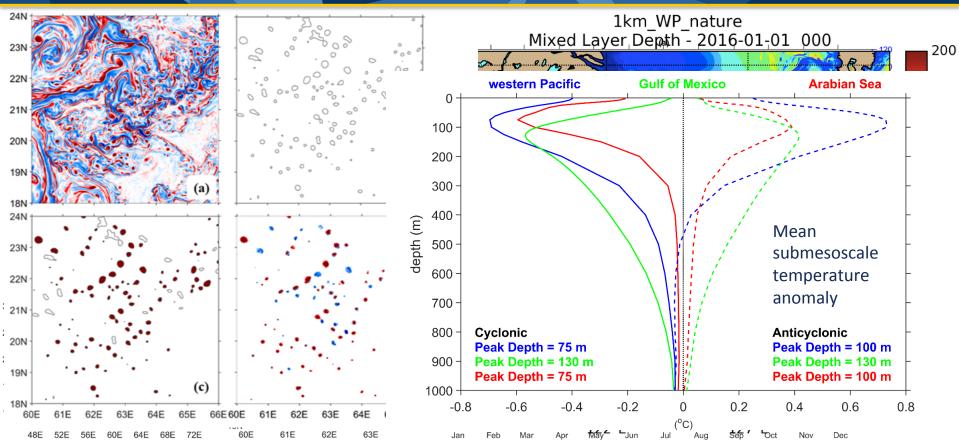
Conclusions

- SWOT data make a considerable improvement to both analysis and forecast skill when using the current system.
- A multi-scale analysis procedure extracts additional data from the high-resolution surface observations without biasing errors into one scale or another.
- Next steps:
- 1. We have taken length scales into account, but not differences in physics (i.e. we assume mesoscale dynamics in both scales).
- 2. Need to implement a system that accounts for the complex SWOT error budget.

How low can we go?

Extra Slides

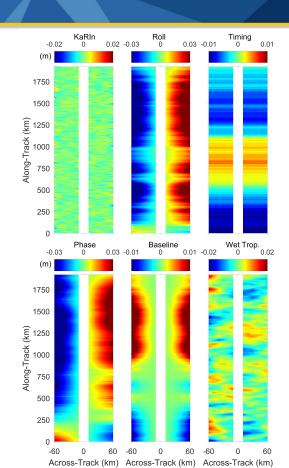
LABORATORY


Question 3

How do we account for the disparate physics found within each scale?

#18

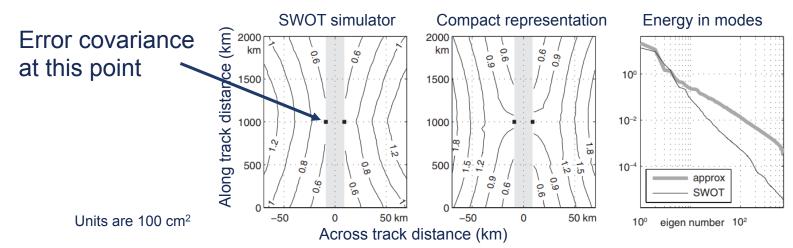
Submesoscale Dynamics



Question 4

How do we account for the complex SWOT error budget?

SWOT Observation Error Covariance



$$\delta \mathbf{x}_{m} = \mathbf{B}_{m} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{B}_{m} \mathbf{H}^{T} + \mathbf{R}_{m} \right)^{-1} \delta \mathbf{d}_{m}$$

$$\delta \mathbf{x}_{s} = \mathbf{B}_{s} \mathbf{H}^{T} \left(\mathbf{H} \mathbf{B}_{s} \mathbf{H}^{T} + \mathbf{R}_{s} \right)^{-1} \delta \mathbf{d}_{s}$$

R errors contains representativeness and sensor errors

 \mathbf{R}_{m} Submesoscale, internal waves, unmodeled physics, sensor error - \mathbf{R}_{s} + \mathbf{R}_{u} + \mathbf{R}_{o} + \mathbf{R}_{s} Submesoscale, internal waves, unmodeled physics, sensor error - \mathbf{R}_{i} + \mathbf{R}_{u} + \mathbf{R}_{o}

Yaremchuk, M., et al., 2018. On the approximation of the inverse error covariances of high-resolution satellite altimetry data. Quarterly Journal of the Royal Meteorological Society, 144(715), pp.1995-2000.